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As farmers and farm advisers, you make many manage-
ment choices during a growing season. For example, you 
may have to decide which cultivar to plant, which herbicide 
to use, how frequently to apply a fungicide, and what rate of 
nematicide to use. Often the information needed to make the 
best decision is available to you, but when it is not available 
you can frequently compare the options by conducting your 
own small experiments. Your experiments can be just as 
valid as any university study if you follow a few important 
principles of experimental design. 

All experiments have certain things in common, so de-
signing an experiment usually includes the following steps. 
You must decide what question you want to have answered. 
This is the goal, or objective, of the experiment. The goal of 
the experiment will dictate what to include in the experiment 
to help you answer your question. The individual things that 
you wish to test in your experiment are called “treatments” 
and the physical areas to which the treatments are applied are 
called “plots.” Then you need to decide how the treatments 
should be physically arranged in the field. Technically, this 
is what is called the “experimental design.” Experiments an-
swer your original question by allowing you to make unbi-
ased comparisons among the treatments you selected. You 
will need some way to evaluate how well each treatment 
worked to make comparisons among treatments. The infor-
mation you collect to help you make those comparisons 
(such as yield, insect counts, or disease severity) is called 
“data.” Finally, you need an objective way to evaluate the 
data. This is usually done through statistical analysis. 

SELECTING TREATMENTS 
The objective, or purpose, of the study will determine the 

treatments included in an experiment. Writing down the test 
objectives is helpful because this forces you to define them 
precisely. A test may have more than one objective, although 
multiple objectives should be closely related.  

The selection of treatments is usually logical if you can 
define the purpose of the study; all treatments necessary to 
address the test’s objective should be included. For example, 

if the purpose were to determine which of five fungicides 
works the best, then the treatments would include all five of 
those fungicides. If the purpose were to determine if any of 
the five fungicides works better than your current choice, 
then the treatments would include the five fungicides plus the 
fungicide you currently use. Accurately stating the purpose 
of the test before the treatments are applied in the field is 
critical. After the treatments have begun, it will be too late to 
add other treatments to answer the question you really 
wanted to address. 

The selection of treatments and the experimental design 
get more complicated as the question you are trying to an-
swer gets more complex. It is common to want to test in the 
same experiment two (or more) things that influence crop 
production. For example, you may want to test chicken litter 
as a fertilizer and test five corn hybrids to maximize yield. 
The specific questions addressed in this case are:

1. What effect does chicken litter have on corn produc-
tion?

2. What effect do the hybrids have on corn production?
3. Does chicken litter have the same effect on each hy-

brid?
The third question may not be as obvious as the first two, but 
it will always be asked or implied if you are testing two or 
more factors in the same experiment. In this example, you 
have to determine what the effect of chicken litter is on each 
hybrid and then compare those effects to each other. To do 
that, the treatment list must include each hybrid without 
chicken litter and each hybrid with chicken litter (a total of 
10 treatments). With this list of treatments, you can make the 
comparisons necessary to answer our three questions. This 
example employs a “factorial arrangement of treatments” that 
will be discussed in more detail in a later section. 

One final note about treatment selection involves includ-
ing additional treatments to provide a relative measure of 
effect. Comparing the yield of five new corn hybrids does 
little good if you cannot tell how those yields compare 
with the hybrids you already grow. You should include at 
least one hybrid with which you are already familiar (often 
called a “standard” treatment) to provide a relative measure 
of how well the new hybrids produce. If you wish to test a 
new nematicide, you should include a treatment with the cur-
rently used nematicide and a treatment with no nematicide as 
a basis for comparison. Such treatments are known as 
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“checks” or “controls.” Without the proper controls, you 
will not be able to say that the new nematicide worked better 
than the currently used nematicide or even that the new 
nematicide worked better than no nematicide! The questions 
you wish the experiment to answer should indicate what 
treatments should be included as controls. 

It is frequently desirable to have both a positive and a 
negative control in an experiment. The negative control 
helps you determine if the treatments being tested work better 
than some minimal treatment (or nothing) and positive controls 
help you determine if the treatments being tested work better 
than the current standard practice. You may have several con-
trol treatments in an experiment if you currently have several 
viable options from which to choose. For example, if you cur-
rently can choose either of two fungicides to control a leafspot 
problem, you may wish to include them both as controls in 
your experiment when you test new products. You do not have 
to include all currently available options as controls for the 
experiment to be useful, but you can. 

REPLICATION 
In an experiment, replication means that individual treat-

ments (such as each of the five pesticides being tested in an 
experiment) have been applied to more than one plot. Replica-
tion is necessary because all test plots are not identical, and 
that leads to variation in the data you collect; you will not get 
exactly the same results from two plots that received the same 
treatment. You can take steps to minimize the effect of varia-
tion if it has an identifiable cause, but there will always be 
some variation among plots that cannot be controlled. In statis-
tical terms, uncontrolled variation is called experimental error. 
The purpose of replication is to allow you to make a more ac-
curate estimate of how each treatment performed even though 
there is uncontrolled variation in the experiment. This can best 
be shown in an example. 

Suppose you have 10 rose bushes and you want to test if a 
new fungicide will protect the bushes from black spot, a fungal 
leaf disease. You could pick five plants to leave untreated as a 
control and spray the other five with the fungicide. Later, when 
black spot is evident on the leaves, you count the number of 
diseased spots on each plant and compare the two treatments. 
The five untreated plants have 26, 21, 19, 25, and 23 infected 
spots (a treatment mean, or average, of 22.8 spots per plant), 
and the fungicide treated plants have 20, 15, 18, 21, and 20 
spots (a mean of 18.8). Statistical analysis indicates that the 
fungicide did in fact reduce the number of infected sites, but 
you would not be able to determine that if you only had one 
treated and one untreated plot. Think about the following ex-
amples based on the data above. If you only had two plants 
and the untreated plant had 26 spots and the treated plant had 
15 spots, it may seem easy to determine that the fungicide re-
duced disease. But what if the untreated plant had 19 spots and 
the treated plant had 21 spots? You might conclude that the 
fungicide did not work or even that it increased disease! Ade-
quate replication can minimize this problem. 

It is common when you have several replications of 
each treatment to have data like that in the rose example 
above: The treatment means are different but individual 
measurements may overlap. In this example, the lowest 
measurement from the untreated plants was 19, and the 
highest measurement from the fungicide treated plants was 
21, but the treatment means were 22.8 for the untreated 
plants and 18.8 for the treated plants. Replication of 
treatments increases your ability to detect differences 
in treatment means. Having more replications allows you 
to identify (statistically) smaller differences in treatment 
means than you could identify with fewer replications. 

The number of replications that you need is influenced 
by the biology of what you are testing, how close together 
the treatment means are, and how much variation exists 
within a treatment. For field tests in plant pathology, nema-
tology, weed science, soil fertility studies, and entomology, a 
minimum of four replications is suggested, but five or six 
replications are much better. If treatment means are close 
together or variation is relatively large among the plots that 
received the same treatment, then you may need more repli-
cations to detect differences among treatments. 

Just as the data may vary within a replicated treatment, the 
results may vary among experiments if the whole experiment 
is repeated. This can happen because of different weather con-
ditions, different disease or insect pressure, or many other fac-
tors beyond your control. This does not mean that the results 
of a single experiment are not valid, but it does make it dan-
gerous to draw conclusions from a single experiment. The one 
set of results you have may indicate treatment differences, but 
if you repeated the test several times you might not see those 
treatment differences again. If the test is repeated (and that 
means you cannot change any of the treatments) and you 
get similar results, then you can be much more confident 
that your conclusions are correct. 

RANDOMIZATION 
Randomization in an experiment means that the treat-

ments are assigned to plots with no discernable pattern to 
the assignments. The reason randomization is important is 
that the positioning of treatments within the block may af-
fect their performance. One example of this is an experi-
ment testing five corn hybrids (labeled 1 through 5) in 
which you plant the hybrids in the same order in each 
block: 1, 2, 3, 4, then 5 (see figure 1). If hybrid 2 is natu-
rally much taller than the others, it can slightly shade the 
hybrids planted next to it (hybrids 1 and 3) and unfairly 
make them look a little bit worse than they would look if 
they were not planted next to hybrid 2. Another example is 
a field in which soil fertility gets progressively lower as 
you cross the field from east to west so that productivity is 
reduced as you go from one side of the field to the other. If 
two corn hybrids are planted side by side but within a 
block, hybrid 1 is always planted on the east side of hybrid 
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2, then hybrid 1 is always planted in slightly more fertile 
soil and therefore has an unfair advantage. 

Figure 1. Test plots on the left are not randomized. Plots on 
the right are randomized. The numbers (1-5) represent the 
five treatments in this test. 

In both of the preceding examples, randomization could 
have prevented the unintentional bias because the arrange-
ment of the treatments would have been different within each 
block. Because you cannot anticipate all the influences that 
may introduce bias into a test, ALL experiments should be 
randomized. There are many ways to randomize treatments 
within a block, but the simplest is literally to pull the num-
bers out of a hat. Assign each treatment a number, write the 
numbers on individual pieces of paper, mix the slips of paper 
up, and then select the slips one at a time without looking at 
them first. The order in which the numbers are drawn is the 
order in which they will be arranged in a block. Repeat these 
steps for each block in the experiment.  

If you wish to use the experiment as a demonstration plot 
(such as for a field day), it is common that one block not be 
truly randomized. This is done so that particular treatments can 
be seen side-by-side to facilitate comparisons and highlight 
differences for casual observers. Though it is better to random-
ize all blocks and not intentionally arrange treatments, arrang-
ing the treatments in one block is unlikely to affect the test’s 
results as long as the other blocks are truly randomized. 

PLOT SIZE 
A plot, the area to which an individual treatment is ap-

plied, can be any size, including a single plant growing in a 
pot or 5 acres or more of a field. Before you can apply treat-
ments to your test area, you must decide how large your plots 
should be. Although there is a lot of subjectivity in selecting 
plot size, there are some important considerations including 
the equipment to be used in planting, harvesting, and treat-
ment application; how much space is available for use in the 
experiment and how many other treatments there are; and the 
biology of what you are studying. Accommodating equip-
ment and space concerns makes it easier to conduct the test. 
Accommodating biological concerns reduces the chances of 
overlooking differences among treatments. Equipment and 

space considerations are usually easy to identify, but biologi-
cal considerations are not always obvious. 

If you have equipment to plant, harvest, and apply treat-
ments to four rows at a time, then the logical plot width would 
be some multiple of four rows (four rows, eight rows, 12 rows, 
etc.). Any other width (such as six rows) would make it more 
difficult to conduct the experiment. The length that plots 
should be is more flexible than plot width. For example, if you 
plan to weigh the harvest from each plot, the scales you have 
may influence the length plots should be. If you have scales 
that are designed for weighing hundreds of pounds, your plots 
should be large enough to provide a harvest weight that can be 
accurately determined by your equipment, and increasing the 
length of plots is an easy way to do that. Also, the length of 
your plots may be adjusted so that all of your plots (all replica-
tions of all treatments) will fit into the area available for your 
test. If you have a large area for your test, space may not be an 
important consideration. 

To accommodate biological considerations, you should 
answer two questions:  

1. How large a plot is needed to observe the biological ef-
fect (disease severity, insect damage, weed frequency, 
nematode population levels, etc.) that you are study-
ing?

2. How large a plot is needed to minimize the influence 
of a treatment (chemical application, etc.) on the
plots next to it?

By answering these questions, you can determine the 
minimum plot size necessary to get useful data from the ex-
periment. 

To get an accurate measurement of the effect of pest man-
agement treatments, the plot must be large enough to account 
for uneven initial distribution of the pest (pathogen, insect, 
weed, etc.). Some areas may start with the pest present, but the 
pest may occur in other areas only after it has spread from its 
initial location. This is very important for pests that spread 
very slowly (such as most soilborne organisms). 

Some diseases and pests are highly mobile and spread 
very rapidly (such as many insects). In an insect management 
trial, measuring the effect of a treatment can be very difficult 
if your plots are too small because the insects that you see in 
the plot may have simply spread from the plot next to it. To 
minimize this problem, you can increase your plot size and 
then collect data from the middle section of the plot. For ex-
ample, you might have an eight-row plot but only collect 
data from the middle four rows. The rows from which you do 
not collect data are often referred to as “buffer rows” because 
they buffer the effect of the neighboring plots. If you do not 
use buffer rows when they are needed, you may fail to detect 
differences among treatments and incorrectly conclude that 
many treatments were ineffective. Buffer rows are frequently 
used when there is uncertainty whether treatments can influ-
ence nearby rows. 

A similar concept involves the use of border rows along 
the edges of your test area. A significant “border effect” 
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commonly exists at the edge of a field where the plants may 
grow differently than plants not at the edge. Although you 
may be able to minimize this problem with blocking, it is 
often better to eliminate the problem by not using the rows at 
the edge of a field in your experiment. 

Once the plots are large enough to be representative of a 
much larger area, further increasing plot size will not signifi-
cantly improve the accuracy of the results. For example, in 
an experiment testing fungicides for control of white mold, 
or stem rot, in peanut, a four-row-wide by 100-foot-long plot 
should be just as good as an eight-row-wide by 400-foot-
long plot. Plots that are larger than necessary take more field 
space and may increase the amount of work required for an 
experiment, but they usually will not adversely affect the test 
results unless the plots get so large that the plots within a 
block are no longer uniform. Plots that are too small may 
prevent the accurate assessment of treatment effects. If the 
space available for an experiment is limiting, having 
more replications is usually more beneficial than having 
larger plots as long as your plot size allows accurate as-
sessment of treatment effects. 

EXPERIMENTAL DESIGNS 
Completely Randomized Design 

The completely randomized design is the simplest experi-
mental design. In this design, treatments are replicated but not 
blocked, which means that the treatments are assigned to plots 
in a completely random manner (as in the left side of figure 2). 
This design is appropriate if the entire test area is homogeneous 
(uniform in every way that can influence the results). Unfortu-
nately, it is rare that you can ever be confident of a test site’s 
uniformity, so a completely randomized design is rarely used in 
field tests. The completely randomized design is used more 
commonly in greenhouse tests, though blocking is often useful 
even in the more controlled environment of a greenhouse. 

Figure 2. The shaded area represents an area of the field 
that is different from the unshaded area. Treatments (A, B, 
and C) are replicated but not blocked in the field on the left. 
On the right, treatments are replicated and blocked; each 
block contains one plot of each treatment. 

Randomized Complete Block Design 
The randomized complete block design is the most com-

monly used design in agricultural field research. In this de-
sign, treatments are both replicated and blocked, which 
means that plots are arranged into blocks and then treatments 
are assigned to plots within a block in a random manner (as 
in the right side of figure 2). This design is most effective if 
you can identify the patterns of non-uniformity in a field 
such as changing soil types, drainage patterns, fertility gradi-
ents, direction of insect migration into a field, etc. If you 
cannot identify the potential sources of variation, you 
should still use this design for field research but make your 
blocks as square as possible. This usually will keep plots 
within a block as uniform as possible even if you cannot pre-
dict the variation among plots.  

Blocking refers to physically grouping treatments to-
gether in an experiment to minimize unexplained varia-
tion in the data you collect (referred to as experimental 
error). This allows the statistical analysis to identify 
treatment differences that would otherwise be obscured 
by too much unexplained variation in the experiment. 
Variation in an experiment can be divided into two types: 
variation for which you can account in the statistical analysis 
and variation that is unexplained. The goal in blocking is to 
allow you to measure the variation among blocks and then 
remove that variation from the statistical comparison of 
treatment means. If you can anticipate causes of variation, 
you can block the treatments to minimize variation within 
each block and remove some variation from the statistical 
analysis. The mathematics of how blocking allows you to 
reduce unexplained variation is beyond the scope of this bul-
letin. 

In the most common experimental designs, a block will 
contain one plot of each treatment in the experiment. If an 
experiment has five treatments, then each block will contain 
five plots, with each plot receiving a different treatment. 
When a block contains one plot of each treatment, then each 
block represents one replication of each treatment. For this 
reason, blocks are frequently referred to as “replications” or 
“reps,” but the concept of blocking should not be confused 
with the concept of replication; replication and blocking 
serve different purposes. In agricultural research, field plots 
are almost always blocked even when no obvious differences 
are present in the field. It is much better to block when you 
did not really need to than not to block when you should 
have blocked. 

Blocking is a very powerful tool that is most effective if 
you can anticipate sources of variation before you begin an 
experiment. For example, in a herbicide trial, one side of a 
field may have a history of more severe weed problems. If you 
just scattered your treatments randomly through the field, a lot 
of the variation in the data you collected could be due to the 
increased weed pressure on one side of the field. Such varia-
tion would make it difficult to determine how well each treat-
ment worked. Because you know one side of the field will 
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have more weeds, you can remove that source of variation 
from the statistical analysis by blocking and improve your 
chances of identifying differences among treatments. 

The process of blocking follows a logical sequence. 
First, you determine that there is something (weeds, drain-
age, sun/shadow, water, soil type, etc.) that is not uniform 
throughout the experimental area (field, greenhouse, etc.) 
that may influence whatever you are measuring (yield, plant 
height, etc.). Then you can arrange your treatments into 
blocks so that the area within each block is as uniform as 
possible (see figure 2). Though the area within a block 
should be relatively uniform, there may be large differences 
among the blocks, but that is what makes blocking effective. 
Your goal is to maximize the differences among blocks 
while minimizing the differences within a block. 

The shape of the blocks is not important as long as the 
plots within a block are as uniform as possible. Ideally, the 
only differences among plots within a block should be due to 
the treatments. Blocks in field experiments are usually square 
or rectangular, but they may be any shape. Blocks in the 
same experiment do not have to be the same shape; the shape 
of individual blocks will be determined by variation in the 
field that you are trying to minimize. If you are not sure what 
shape your blocks should be, square or nearly square blocks 
are usually a safe choice. 

Blocks may be arranged through the field in many ways. 
If the field is wide enough, an easy way to arrange blocks is 
to place them side-by-side all the way down the field (see 
figure 3). But blocks do not have to be contiguous and may 
be scattered through the field in any way that is convenient 
for you.  

 
Figure 3. An easy way to arrange blocks is to put them side by 
side across the field. Letters represent different treatments. 

Factorial Arrangement of Treatments 
A factorial arrangement of treatments is not an experi-

mental design, though you will often hear it referred to as a 
factorial design or a factorial experiment. A factorial ar-
rangement of treatments means that the experiment is testing 
two or more factors at the same time, and that the experiment 
includes all combinations of all factors. The term “factor” is 
used to describe a group of treatments that have something in 
common. Fungicides, sources of nitrogen, or corn hybrids 
could be considered factors in an experiment. Factors may be 
defined broadly or narrowly in different experiments. All 
herbicides may be grouped as a factor in one experiment, but 
pre-plant and post-plant herbicides may be treated as separate 
factors in another experiment. A single-factor experiment 

tests one factor at a time; a two-factor experiment tests two 
factors at once. 

Most simple on-farm experiments are single-factor ex-
periments (in a Completely Randomized or Randomized 
Complete Block design) and compare things such as crop 
varieties or herbicides, but it is sometimes useful to test two 
or more factors at once. For example, a two-factor experi-
ment would allow you to compare the yields five corn hy-
brids at three planting dates. This accomplishes three things 
at once:  

1. It allows you to compare the corn hybrids to each 
other.  

2. It allows you to evaluate the effect of planting date. 
3. It allows you to determine if varying the planting 

date changes the relative performance of the hybrids 
(e.g. one hybrid may only perform well if planted 
early).  

The first two could be done in separate single-factor experi-
ments, but the third can only be achieved by having both fac-
tors in a single experiment. This becomes especially important 
if one factor can have a significant influence on the effect of 
the other factor. For example, you might test soybean varieties 
as one factor and nematicides as another factor. If a few varie-
ties have good nematode resistance but others do not, they may 
appear equally good when effective nematicides are used but 
varieties with resistance would appear much better when 
nematicides are not used. In cases like this, the effect of one 
factor (variety) is strongly influenced by the other factor 
(nematicide). When one factor influences the effect of the 
other factor, there is said to be a significant interaction be-
tween the two factors. It can be very important to know if 
there is an interaction between factors, because if there is 
an interaction, you can make predictions or recommenda-
tions based on the results of single-factor experiments 
ONLY when all other factors are at the same levels they 
were at in the experiment. If you change some factor not in-
cluded in the experiment, the results from your single-factor 
experiment may no longer be valid. 

With a factorial arrangement of treatments, all values 
(or levels) of each factor must be paired with all levels of 
the other factors. If you have two nematicides and five 
soybean varieties, then your treatment list must include 
each variety with each nematicide for a total of 10 treat-
ments. This would be referred to as a “two by five facto-
rial” to denote how many factors were present in the ex-
periment and how many levels of each factor were used. 
The number of treatments increases quickly when you add 
more levels for a factor (if you used three nematicides in-
stead of two, you would have 15 treatments instead of 10), 
so choose your levels carefully or the experiment can get 
too large to manage. 

A factorial arrangement of treatments can be a very pow-
erful tool, but because the number of treatments can get very 
large it is best used when some reason exists to believe that 
the factors may influence each other and have a significant 
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interaction. If there is no suspicion that the factors may 
influence each other, it is frequently easier and more 
thorough to test the factors in separate experiments. A 
factorial arrangement of treatments can be used with a com-
pletely randomized experimental design or a randomized 
complete block design. The top half of figure 4 shows a fac-
torial arrangement of treatments in a randomized complete 
block design. 

 
Figure 4. A 2x5 factorial arrangement of treatments in a ran-
domized complete block design (above) and in a split-plot 
design (below). A and B represent two levels of one factor, 
and the numbers (1-5) represent five levels of a second fac-
tor. The combinations (e.g., 4A, 5B, etc.) denote individual 
treatment combinations. Either experimental design could be 
used, but the randomized complete block design is preferred 
unless the split-plot design is required by some limitation on 
randomization. 

Split-Plot Experimental Design 
A split-plot experimental design is a special design that 

is sometimes used with factorial arrangements of treatments. 
This design usually is used when an experiment has at least 
two factors and some constraint prevents you from ran-
domizing the treatments into a randomized complete 
block design. Such a constraint may be based on equipment 
limitations or on biological considerations. For example, the 
equipment you have may make it difficult to put out a soil 
fumigant in randomized complete blocks, but you may be 
able to put out the fumigant so that all treatments within a 
block that get the fumigant will be clustered together rather 
than scattered throughout the block. You can use a split-plot 
experimental design to work around this limitation as long as 
you are able to randomize the other factors. There are other 

situations when this design is appropriate, but a constraint on 
randomization is the most likely to occur. 

Suppose you want to test the effect of five fungicides to 
control Cylindrocladium Black Rot on two varieties of pea-
nut. In this test, you would have a 2x5 factorial arrangement 
of treatments: The two factors would be varieties (2 levels of 
this factor) and fungicides (5 levels of this factor). Because a 
factorial arrangement of treatments is not an experimental 
design, you still have to select an experimental design that 
best meets your needs. If you are able to randomize varie-
ties and fungicides within a block, then you should pick a 
randomized complete block design. If there is some reason 
why you cannot completely randomize the treatments within 
each block, then you may be able to use a split-plot design to 
work around that limitation. For example, you may have a 
six-row planter but only enough space in the field to put out 
four-row plots. To resolve this dilemma, you could plant all 
of the plots that have the same peanut variety together within 
a block and then randomize the five fungicide treatments 
within each peanut variety. 

In split-plot designs, the terms “whole plots” and “sub-
plots” refer to the plots into which the factors are random-
ized. As the names imply, whole plots are subdivided into 
subplots. In figure 4, a whole plot would be the areas desig-
nated with A or B, and the subplots, the subdivisions within 
the whole plots, are designated 1, 2, 3, 4, or 5. In this exam-
ple, A and B could represent two varieties (two levels of one 
factor) and the numbers could represent different fungicides 
(five levels of a second factor). Each whole plot serves as a 
block for the subplot treatments. 

To assign treatments in a split-plot design, start by identify-
ing where each block will be. Then randomize the whole plot 
treatments within each block. The whole plot treatments will be 
the treatment that you are unable to randomize into a random-
ized complete block design. The subplot treatments can then be 
randomized within each whole plot treatment (see figure 4). 

DATA COLLECTION 
You can collect an almost infinite amount of data in any 

experiment, but not all of it will be useful. Proper planning will 
ensure that you collect the right data to address your test’s ob-
jective. The “right” data to collect can usually be determined 
by examining the stated purposes of the experiment. For ex-
ample, if the objective of a peanut leafspot fungicide trial is “to 
evaluate the ability of five fungicides to reduce leafspot inci-
dence and severity,” then collecting data on leafspot incidence 
and severity and peanut yield should seem obvious. Collecting 
data on rainfall and temperature, which strongly influence leaf-
spots on peanut, may be worthwhile because it can help you 
explain your results. But collecting data on soil physical prop-
erties does not seem to be related to the objective. It is useful 
to ask yourself, “How can this data be used?” If you have 
trouble answering that question, then collecting that data may 
be a waste of time. It is much more common for people to 
collect too little data than to collect too much data. 
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Deciding what data to collect is only part of the process. 
You also have to decide when to collect that data and if you 
need to collect the same type of data on more than one occa-
sion. For example, in a nematicide trial, it is not sufficient to 
collect nematode population data at harvest; you must also 
collect data at planting to ensure that the plots started out 
equal. It is usually a good idea to collect nematode popula-
tion data in the middle of the season because even in effec-
tive treatments nematode populations can sometimes increase 
to the level of the untreated control by the end of the season. 
The biology of the organisms involved will determine when 
and how frequently data should be collected. 

So, how much data is enough? The answer is “enough 
data to fully address the test’s objective.” If you understand 
the biology of the organisms involved and how your data 
addresses the test objective, then you should be able to tell if 
you are collecting enough data. 

You should take photographs of any differences among 
treatments that are easily visible. To most farmers, a picture 
is more convincing than a graph or data table. 

COLLECTING UNBIASED DATA 
It is critically important to collect unbiased data. 

The only way to ensure this is to collect data without 
knowing what the treatment was in that plot. That would 
be difficult to do if the treatment were written on a stake in 
front of each plot. It is beneficial to use some type of code 
on the plot stakes so that you have to decode the stake 
number to determine what the treatment was. You can 
make up any code you like just so long as the person col-
lecting the data cannot tell from the plot stake what the 
treatment was. For example, you can number the plots se-
quentially (1, 2, 3, etc.) and have a sheet of paper listing 
what treatment was applied to plot 1, plot 2, etc. When you 
collect the data, you write down your observation for plot 
1 and later look at your list to see what treatment was in 
that plot. 

If you know what treatment was in a plot, or which plots 
were the untreated controls, your evaluations (disease severity 
ratings, insect damage ratings, etc.) may inadvertently be influ-
enced. Your subconscious may slightly increase the ratings for 
untreated plots and decrease it for the plots with treatments that 
you think should work well. You will probably not even be 
aware that it is happening, but these subtle influences can 
change the data enough to affect your ultimate conclusions 
from the test. If you do not collect unbiased data, you cannot 
be certain that your conclusions are correct. 

STATISTICAL CALCULATIONS 
After collecting data from a properly designed experi-

ment, you will usually need to analyze the data with appro-
priate statistical calculations. Statistical analysis may not be 
necessary if treatment differences are very large and consis-
tent; treatment means may then be sufficient. Statistical 
analysis is beyond the scope of this publication. Proper sta-
tistical analysis can be done if your experiment was designed 
according to the principles outlined in this publication, but 
proper analysis can be complicated greatly if these principles 
were not followed. 

It is probably best for you to seek help in making statisti-
cal calculations. If your experiment was properly designed, 
Extension specialists and other scientists may be willing to 
help you with the statistics if you involve them early in the 
process. They can also check your proposed design for flaws 
and omissions. If you want to do the work yourself some 
simple statistics can be calculated by hand, but most people 
will make the calculations with the help of computer soft-
ware. Specialized statistical software is available, but most 
spreadsheet software can calculate simple statistics. 

SUMMARY 
The following checklist can be used in designing an ex-

periment. These items may be addressed in any order. 
 Determine the objective of the test. 
 Select treatments to address the objective. Consider in-

cluding positive and negative controls. 
 Determine what data should be collected, and when it 

should be collected, to address the objective. 
 Select the number of replications to use. Consider four 

replications a minimum. 
 Determine how big individual plots will be. 
 Select an experimental design. 
 Determine how blocks should be arranged in the field. 
 Randomize treatments within blocks. 

Properly designing and implementing a field trial may 
seem complex the first time, but it is really a logical process 
that should not be intimidating. You may need help the first 
time you design a trial to ensure that you are not overlooking 
something important, but if you learn the principles involved 
in the process, you should quickly gain confidence in your 
ability to conduct experiments on your own. 

 
 

 
 
 






