Insect Insect Identification Guide for Southeastern Landscapes

How to use this booklet

Go to the tab that best exemplifies the damage observed on ornamental plants or turfgrass. Some insects are not easily seen. Sometimes a magnifying glass or a microscope is needed. The type of damage caused can provide evidence of the culprit. Not all insects cause damage and many benefit your garden. You will find many of these insects in the beneficial insects section of this book.

Key

Size of the insect:

needs magnification to be observed

1/8" to 1/2" long

\\\\\\ 1/2" long or more

Practice Integrated Pest Management (IPM)

Before choosing a course of action about an insect in the garden, remember the four principles of IPM:

- Monitor the garden
- Identify the insect or problem
- Evaluate the situation and predict the impact of the damage, if any
- Make a decision about the best course of action and choose your control methods

Consult your county Extension agent and state pest control handbook regarding the choice of control methods. Always follow pesticide labels and use proper precautions before handling pesticides.

Pretty or pest?

Some insects, especially those that cause chewing damage to plants, are beautiful additions to the garden at later stages in their life. Take a look at the caterpillars and see what they become before you decide to take action.

Cabbage butterfly larva

Cabbage butterfly

Monarch butterfly larva

Monarch butterfly

Tiger swallowtail larva

Tiger swallowtail butterfly

D. Cappae

Chewing damage

CLUES Scraped or chewed leaves or flowers. Frass and webbing.

Examples

possible culprits

Beetles

Japanese beetles (adults)

Tortoise beetle

Imported Willow Leaf Beetle (adult)

Imported Willow Leaf Beetle (larvae)

Caterpillars

Azalea caterpillar

Bagworm

Fall webworm

Oak leaf caterpillar

Tent caterpillar

Yellownecked caterpillar

R. F. Billings

Grasshoppers & Sawflies

American grasshopper

Bristly roseslug sawfly (larva)

Oak sawfly (larva)

Redheaded pine sawfly (larvae)

Dieback damage

CLUES Unusual wilting, drying or death of a branch or twig on an otherwise healthy plant.

Examples

possible culprits

Armored Scales

Tea scale

Soft Scales

-0

Lecanium scale

Wax scale ---

.A. Weidhass

Dieback damage

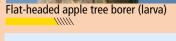
Examples

t. Baker / S.B. Bambara

possible culprits

Borers

Emerald ash borer (larva)


Flat-headed apple tree borer (adult)

B.W. Kauffman

Goldenrod locust borer

Ū.

Granulate ambrosia beetle

Distortion damage

Abnormally shaped or colored deformation of plant parts. Some of these can also be symptoms of plant diseases.

Galls

possible culprits

Distortion damage

Insects & mites that make galls

Adelgid

Psyllid

McKeever

Eriophyid mite (adult) -0

S.P. van Vuuren

F. Wootten

Leaf curling Culprits

Aphid

Thrips

Leaf mines

Azalea leaf damage

Culprits

Azalea leaf miner (moth)

Boxwood leaf damage

Holly leaf damage

Boxwood leaf miner (fly) ----

J. Baker

Holly leaf miner (fly) ---Ó

Stippling damage

Chlorotic spots. Also look for frass, cast skins and webbing.

Examples

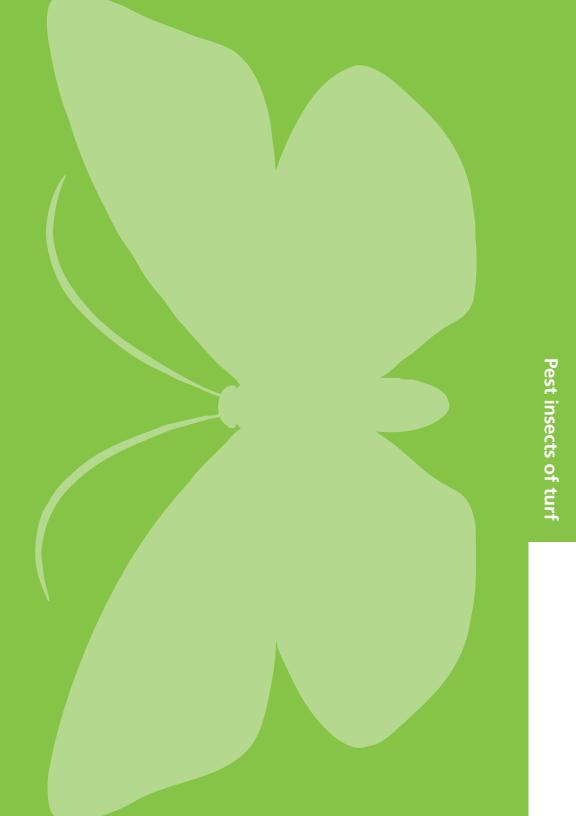
possible culprits

Stippling damage

Lace bugs

Azalea lace bug

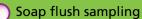
Mites


Hawthorn lace bug

Southern red mites and eggs

Two-spotted spider mite

Pest insects of turfgrass


While visual evidence of insect damage to turfgrass is often seen above ground, damage can be caused by insects that live either above ground or below ground. **Proceed to the tabbed section that best exemplifies observable damage.**

Sampling

Several techniques are used to confirm the presence of insects in turgrass.

Soil sampling

Above ground pests

CLUES Chewed or shredded leaves, leaves with shot-holes, cut stems, abnormal yellowing or drying of leaves. Also look for frass, webbing or spittle-like substance on leaves.

Examples of damage

possible culprits

Chewing pests

Armyworm (larva)

Armyworm adult (moth)

Fall armyworm (larva)

Fall armyworm adult (moth)

B.R.Wiseman

Billbug adult

Sod webworm adult (moth)

Chewing pests

Black cutworm (larva)

Black cutworm adult (moth)

Bronzed cutworm (larva)

Bronzed cutworm adult (moth)

A. Sisson

Variegated cutworm (larva)

Variegated cutworm adult (moth)

Sucking pests

Chinch bug (adults)

Spittle bug (adult)

Spittle bug (nymph)

Below ground pests

CLUES Abnormal yellow, brown, wilted or dried up patches of turfgrass.

Examples of damage

possible culprits

Possible culprits

Cranshaw ≥

Cappae Ľ.

May-June beetle (grubs)

May-June beetle (adults)

Mole crickets

Beneficial insects in the landscape

Beneficial insects include predators and parasitoids. They prey on pest insects or use them as hosts for the parasitoids' young. Such insects are beneficial because they remove pests from the environment.

Predators

Predators prey on pest insects. Predators are generally larger, faster and stronger than their prey and often capture and eat many individuals during their life cycle.

Example

Beetles

Ground beetle

Clemson Univ.-USDA Coop.Ext.

Lady beetle larvae, eggs and adult

Rove beetle

Tiger beetle

Dragonflies

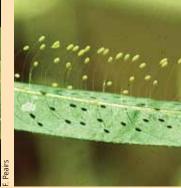
Damselflies

Flies

Long-legged fly

Syrphid fly (adult)

Syrphid fly (larva) with aphid prey


Lacewings

Brown lacewing

W. Cranshaw

Green lacewing

Lacewing eggs

Lacewing larva

Mantids

Praying mantid adult

Praying mantid egg case

Sphecid wasp

S.Ellis

Spiders & Mites

Flower spider

Green lynx spider

Spiny orb weaver

Zipper spider

D. Cappaert

Predatory mite

Predatory mite

True bugs

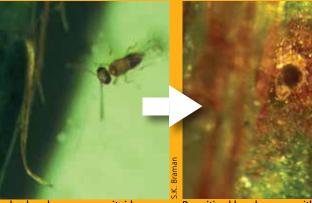
Big-eyed bug

Damsel bug

J. Ruberson

B.Higbee

Predatory stink bug



H.A.Pase III

Parasitoids

Parasitoids are insects that live and develop as parasites on other insects (hosts) and eventually kill them. Parasitoids usually complete their development on a single individual host.

Parasitoids at work

Azalea lace bug egg parasitoid

Parasitized lace bug egg with exit hole

Mummified (top) and healthy aphids

Parasitoid larva inside mummified aphid

Parasitoids at work

Parasitized caterpillar

Parasitized caterpillar with eggs

Parasitized stink bug with egg

parasitoids

Flies & Wasps

Braconid wasp

Eulophid wasp

Ichneumonid wasp

Pteromalid wasp -0

R. Ryan

S. McKeever

R. Ryan

Useful terms

Bugs

"True bugs" are insects belonging to the suborder *Heteroptera*, under order *Hemiptera*. Sometimes "bugs" is misused as a generic term for insects.

Cast skins

Dried skins left by immature insects after they molt.

Chlorotic spots

Pale yellow, green or white spots on leaves caused when sucking pests draw out plant sap.

Frass

Insect fecal matter.

Larva(e)

Immature insects that do not resemble the adult(s).

Nymph(s)

Immature insects that resemble the adult.

Predator

Insects or other organisms that prey on other insects. Predators are generally larger, faster and stronger than their prey and often capture and eat many individuals during their life cycle.

Parasitoids

Insects that live and develop as parasites on other insects (hosts) and eventually kill them. Parasitoids usually complete their development on a single individual host.

Flotation sampling

Method to sample turf insects (e.g., chinch bugs), done by inserting one end of a hollow, cylindrical container into the turfgrass and filling it with water. Insects, if present, will float to the top and can be counted.

Soap flush sampling

Method to sample turf insects (e.g., sod webworms and other caterpillars), done by drenching a unit area of turfgrass (e.g., 2' x 2') with soapy water (2 fl. oz. liquid dish detergent in 1 gal. water). Caterpillars, if present, get irritated by the soap and crawl to the surface, and can be counted and identified.

Soil sampling

Method to sample soil-dwelling insects (e.g., white grubs and bill bug grubs), done by digging about 6 inches deep into a unit area of soil (e.g., 1' x 1'), at several points over the turfgrass. Grubs, if present, will be exposed and can be counted.

This material is based upon work supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture, under Award No. 2009-41530-05560.

Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

extension.uga.edu

Bulletin 1409

Revised June 2017

Published by the University of Georgia in cooperation with Fort Valley State University, the U.S. Department of Agriculture, and counties of the state. For more information, contact your local UGA Cooperative Extension office. The University of Georgia is committed to principles of equal opportunity and affirmative action.