Understanding Wastewater Treatment Systems

Julia Gaskin - Cooperative Extension, Ag Pollution Prevention Program
Brian Kiepper - Engineering Outreach Service, Biological & Agricultural Engineering Department
Dr. Larry West - Crop & Soil Science Department, College of Agricultural and Environmental Sciences
First!

The Law of “Conservation of Mass”:

“Matter is neither created or destroyed”

Always remember: when you flush, it doesn’t disappear!
To Centralize or Decentralize? That is the question!

Centralized Treatment System

Wastewater Treatment Plant
Decentralized Treatment Systems

On-Site Wastewater Treatment (Septic Systems)

Large Community Systems
Centralized vs. Decentralized

- Discharge system
- Capital intensive
- Personnel intensive, but labor efficient
- Provides higher degree of treatment

- Non-discharge system
- Less capital
- Less labor, but still needs maintenance (Who maintains?)
- Uses plant /soil soil system for treatment
Centralized System Treatment

- Large Debris: screened and sent to a landfilled
- Grit Removal: collected and sent to a landfill
- Biological Treatment: microbes use organic matter to grow
- Clarifiers: remove floating oil & grease and biosolids
- Biosolids: Treated and stabilized sludge containing microbe cells
Centralized Wastestreams

Treated Wastewater

Sludge or Biosolids
Decentralized Wastestreams

Effluent

Sludge
Septic Tanks
What Are We Talking About?

Septic Tank Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Concentration (mg/L)</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD<sub>5</sub></td>
<td>200 - 290</td>
<td>40 - 50 %</td>
</tr>
<tr>
<td>TSS</td>
<td>200 - 290</td>
<td>50 - 70 %</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>35 - 100</td>
<td>20 - 30 %</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>18 - 30</td>
<td>30 %</td>
</tr>
<tr>
<td>Fecal coliforms (#/L)</td>
<td>10<sup>8</sup> - 10<sup>10</sup></td>
<td>?</td>
</tr>
</tbody>
</table>

BOD₅ - Biochemical Oxygen Demand; TSS - Total Suspended Solids
Natural Wastewater Disposal Systems

• Uses natural plant/soil processes to clean up wastewater.
• Recycling!
Plant/Soil System

- Soil organisms and plants – absorb nutrients, breakdown organics
- Soil chemical characteristics – hold metals
- Removing aboveground plants - removes nutrients
What Makes It All Work

- Protozoa
- Actinomycetes
- Mites
- Mycorhizzae
- Roots
What Makes It All Work!

Plants!

Annual Rye

Bermudagrass

Forests
What Makes It All Work!

Soil!

- Habitat (mixture of solid, water, and air
- Holds minerals and metals
- Acts as filter

Adapted from Tisdale et al, 1993
Soils
Natural systems affected by the environment

- Weather
- Insect pests
- Stresses
 - too much water,
 - not enough of certain nutrients
Effluent or Wastewater
Slow Rate Irrigation

Irrigation onto land to support vegetative growth, with *no direct discharge* to surface water
Spray Irrigation

Municipal, commercial, or cluster residential

Forest or crops (Bermudagrass/rye)

Forest less management, more land

How NOT to do it!
Spray Irrigation

With filtering and disinfection can be used to irrigate parks or golf courses.
Drip Irrigation

- Commercial or cluster residential
- Some surface drip lines, mostly buried 8-12 in.
- Have to have good filters for particulates
- Usually septic tank then ATU package plant
Drip Irrigation

- Anecdotal evidence:
 - Larger systems >10 acres tend to experience more problems
 - Shopping center systems tend to have more problems
Drainfields

Commercial, cluster residential, single residential

2,000 - 150,000 gpd

Septic tank and trenches
Overland Flow

Discharge system in which wastewater is treated as it flows down grass-covered slopes. Soils must have low permeability to minimize percolation.
Discharge system where wastewater treated by plant/soil system then discharged to stream.

Non-discharge system where treated water infiltrates or evaporates.
Constructed Wetlands

- Municipal, commercial, cluster residential, or single residential
- Septic tank or other treatment, then wetland
- Free water surface and vegetated submerged bed.
Choosing the Right System

Site Characteristics
- Waste strength
- Flows
- Soils
- Hydrology
- Geology
- Topography
- Sensitive areas

Capital Costs
- Land
- Equipment
- Construction
- Operating Costs
- Electricity
- Maintenance
- Periodic Cleaning
Who Maintains?

County?

Homeowners association?

Third party?

Need long-term planning.

May need long-term bonding for failures.
Who Maintains?

- **County** - Set up public utility & charge sewer fees
- **Third party utility** - Private entity set up as utility, Electric Membership Cooperative (EMC) provide this service in some areas
- **Homeowners Assoc.** - Harder to maintain
Public Education

Everyone should know the type of treatment systems they are on

AND things that create problems
This information was developed with help from the AGRICULTURAL POLLUTION PREVENTION PROGRAM

Sponsored by the Georgia Pollution Prevention Assistance Division (P2AD)

Cooperative Extension
Engineering Outreach Service
Biological & Agricultural Engineering Department
Crop & Soil Science Department
College of Agricultural & Environmental Sciences