Rain Gardens in Home Landscapes

Rose Mary Seymour
Engineering Extension Specialist
CAES-Griffin Campus
Ag Pollution Prevention Program
Sponsored by P2AD of Georgia
Outline of Rain Garden Presentation

• Why Do We Want to Create Rain Gardens in Our Landscapes?
 – Discussion on stormwater and how it contributes pollution to streams and other water bodies
 – Solutions to stormwater pollution include beneficial uses of stormwater on-site to reduce stormwater volumes

• Build Your Own Rain Garden
 – Define terms, benefits and purpose
 – How to design a simple rain garden
Why Do We Want to Create Rain Gardens in Our Landscapes?
Development Impacts on the Water Cycle

10% 50% 55% 15%
Impervious Surfaces

- Impedes or prevents infiltration
- Prevents natural processing of pollutants in soil and through plants
- Inhibits recharge of groundwater
- Provides a surface for accumulation of pollutants
- Provides an express route for pollutants to waterways
Polluted Runoff is the #1 Water Quality Problem in the U.S.*

*USEPA
Stream Pollutants from Urban and Developed Land

- Nutrients
- Pathogens
- Sediment
- Toxic Contaminants
- Debris
- Thermal Stress
Two Storm Hydrographs

- **Pre-development**
 - Short, high volume peak discharge
 - Increased total runoff volume
 - Baseline peak discharge

- **Post-development**
 - Higher base flows
Traditional Drainage Systems

- Collect, Concentrate, Convey
The Traditional Approach

Methods:
Conveyance and detention

Goal:
Minimize flooding

Other Issues:
• Downstream hydrology disrupted
• Little water quality control
• Flooding sometimes becomes worse
Better Site Design Practices

Connected

Disconnected
Better Site Design Practices

Connected

Disconnected
On-site vs. Regional Approaches

On-site: Manage stormwater as close to the source as possible

Regional: Rely on large, regional detention facilities

- A residential “rain garden”
- North Griffin Regional Detention Pond
Green Space & Water Quality

Green spaces:
• Promote infiltration
• Decrease runoff
• Provide buffers
• Filter pollutants
Importance of Infiltration

• Preserves natural hydrology
 – Reduces runoff and flooding
 – Maintains base flows

• Cleans water, removing pollutants

• Inexpensive water quality control
What is a Rain Garden?

- An area in a man-made landscape that captures a shallow amount of water and holds it for a short time period
- Runoff water is captured and infiltrated into the soil in an indented area where plants and soils utilize and filter the water
- An attractive addition to a landscape
Purpose of a Rain Garden

• Capture runoff from impervious areas such as roofs, driveways, patios
• Reduce runoff leaving the site
Other Facts About Rain Gardens

- Ponding should last no more than 48 hours after rain stops.
- Typical depths for rain gardens range from 4 to 12 inches with 6 to 8 inches recommended.
- Will not increase mosquito numbers.
- Will attract water loving critters such as frogs, toads and snakes.
Benefits of Rain Gardens

- Low maintenance, low water use, beautiful landscape feature
- Increases infiltration of rainwater in landscapes with impervious surfaces
 - infiltrates as much as 30% more water than a flat or sloped lawn area
- Reduces flooding risks and stream bed destruction downstream
- Can provide a different kind of habitat in the landscape
Planning Your Rain Garden

• Location
• Size
• Plant Mix
Locating a Rain Garden in a Landscape

- At least 10 ft from a building foundation
- Near patio, driveways, roads
- Area where water will naturally move to low areas
- Fitting into the rest of the landscape
Locations to Avoid

• Next to a building foundation
• Over a septic system
• Where water stands for long periods already
 – High seasonal water table area
• Inside the dripline of any large trees
• Slopes greater 12%
Rain Garden Size

• Depends on
 – Area of drainage (impervious area)
 – Depth of ponding of rain garden
 – Soil and slope of location
Sizing a Rain Garden

Determine drainage area

- Calculate or estimate the size of the area that will have runoff going to the rain garden
- For a house,
 - Draw a plan view of the roof
 - Divide the roof into areas going to each downspout
 - Calculate areas draining into the downspouts that will go into the rain garden
Soil Permeability Testing

1. Dig a hole 6 inches deep and wide.
2. Fill hole with water.
3. After 12 hours - if water has not infiltrated into soil around hole, the soil or location is not suitable for a rain garden.
4. If water has infiltrated within the first 12 hours, repeat the test in the same hole.
5. If water is standing in the hole after the second 12-hour test.
 - Soil has permeability unsuitable for a rain garden
 - Or, a high water table is preventing infiltration
Problem Soils

- If soils are high in clay or have been compacted during development, they may not have the capacity to infiltrate well.
- Remove the soil and replace it with a better draining soil.
Problem Soils

• Ideal rain garden soil mix – 50-60% sand, 20-30% topsoil, 20-30% compost
 – No more than 10% of mix should be clay

• Be careful of the nutrient content of composts – lower nutrient concentrations are preferred
Soil Chemistry Test

• Take 2 cups of soil and request a standard soil test from the local county extension agent
 – Results indicate whether pH or nutrients need adjusting for good plant health
 – Takes about 2 weeks and will cost an analysis fee
Deciding the Size

A rain garden on a steeper slope can be smaller and deeper than a rain garden on a flatter slope.

Measuring Slope
Estimating Rain Garden Size

- Sandy soils – 5-8% of runoff area
- Clay soils – 10-15% of runoff area
- Example – Area = 1800 sq. ft.
 - Sandy soil - .06 X 1800 = 108 sq. ft.
 - Clay soil - .12 X 1800 = 216 sq. ft.
- If the area of the rain garden needs to be > 300 sq. ft., consider making two smaller ones or bring in the earth moving equipment
Rain Garden Shape

- Rain gardens are usually not square or a perfect circle
- The long length should be perpendicular to the major slope
- The shorter length should go down the major slope
Layout of a Rain Garden

- Think about where excess storm water will go
- You cannot send your overflow onto your neighbor’s property
- Local government has jurisdiction over land disturbing activities
Installing the Rain Garden

a. Between 3% and 8% slope lawn

Before Digging

- downhill stake
- string

After Digging

- berms
- old lawn surface
- base of rain garden

b. Greater than 8% slope lawn

Before Digging

- downhill stake
- string

After Digging

- berms
- old lawn surface
- base of rain garden
Installing a Rain Garden

• Pointers
 – Bottom of the rain garden should be level
 – Top of berm should be about the same elevation as the uphill edge of the rain garden
Overflow Area

- Always have an overflow method for larger storms
 - Lower area in the berm somewhere
 - Drain pipe within rain garden
Connecting the Rain Garden

• Create a shallow, wide swale or bury a corrugated drain pipe to carry flow from gutter into the rain garden

• Line swales with turfgrass or gravel to prevent erosion

• Flat upslope turfgrass areas can also flow into a rain garden as long as the flow stays very shallow
Installing a Rain Garden

- Lay out edge of rain garden with rope or garden hose.
- Set aside the top 4 to 6 inches of soil (topsoil), excavate the hole, then use topsoil to backfill the planting area.
- Move the soil in the rain garden area down to the bottom edge of the rain garden.
Installing Rain Garden

• Prepare the soil for planting
 – Add lime as recommended by soil test
 – Spread 2 to 4 inches of compost and mix or till it into the whole area of the rain garden

• Now you are ready to plant
Plants

- A wide variety of plants in both size, texture, and color makes for an interesting rain garden.
- Rain gardens can be designed to attract butterflies and birds with the right plant choices.
- Mix trees, shrubs, perennials, ornamental grasses, and turfgrasses.
- Plants must be wet and drought tolerant.
 - Really tough plants.
Trees for Rain Gardens

- Red Maple
- River Birch
- Crape Myrtle
- Black Gum
- Bald Cypress
- Green Ash
- Willow Oak
- Serviceberry
- Hornbeam
- Sweetbay Magnolia
- Dahoon Holly
- Winter King Hawthorn
- Sugar Hackberry
- Fringetree
- Gingko
- Persimmon
- Loblolly Pine
- Hornbeam
Bald Cypress

Loblolly Pine

River Birch
Red Maple

Ginkgo
Crape Myrtle

Sweetbay Magnolia
Green Ash

Fraxinus pennsylvanica
Green Ash

Black Gum
Winter King Hawthorn

Willow Oak
Shrubs for Rain Gardens

- Winterberry
- Arrowwood
- Buttonbush
- Summersweet Clethra
- Wax Myrtle
- Chokeberry
- American Beautyberry
- Bottlebrush Buckeye
- Inkberry
- Oakleaf Hydrangea
- Virginia Sweetspire
- Some native azaleas
Deciduous Shrubs

- Provide Seasonal Interest
 - Flowers
 - Berries
 - Fall Color
- More Natural Growth Form
- Majority of Wetland Plants are Deciduous
Inkberry

Arrowwood

Yaupon Holly
Southern Wax Myrtle

Bottlebrush Buckeye
Oakleaf Hydrangea

American Beautyberry
Groundcovers for Rain Gardens

- Partridge Berry
- Shuttlewort
- Ajuga
- Mondograss
- Strawberry Begonia
- Ginger
Herbaceous Perennial Plants for Rain Gardens

- Aster
- Blackeyed Susan
- Lobelia
- Northern Sea Oats
- Cardinal Flower
- Goldenrod
- Ironweed
- Joe Pye Weed
- Rose or Swamp Mallow
- Swamp Milkweed
- Royal Fern

- Cinnamon Fern
- Netted Chain Fern
- Broad Beech Fern
- Canna Lilies
- Yellow Flag Iris
- Rushes
- St. John’s Wort
- Foam Flower
- White Arrow Arum
- Jack-in-the-Pulpit
Canna Lilies

St. Johns Wort

Ironweed
Royal Fern

Cinnamon Fern

Swamp Milkweed
Blackeyed Susan

Joe Pye Weed

Asters
Ornamental Grasses

Upland Sea Oats
Plants to Avoid

- Those Susceptible to Root Rots
 - Most coniferous shrubs
 - Adapted Exotic Azaleas
 - Indian Hawthorne
 - Camellias
Maintenance

- No special maintenance required
- Routine periodic landscaping maintenance
 - Weeding
 - Pruning
 - Replacing plants
 - Plant Division
 - Replacement of mulch
Credits

“Build Your Own Rain Garden” picture from Rain Gardens of West Michigan www.raingardens.org

💧 Photos with this symbol from City of Maplewood http://www.ci.maplewood.mn.us/index.asp

 وغير مential

культ Slides with this symbol were derived from information from the NEMO website – Nonpoint Source Education for Municipal Officials http://nemo.uconn.edu
Credits

Pictures of individual plants from:
 Todd Hurt, Horticulture Specialist, Georgia Cooperative Extension
 Gary Wade, Horticulture Specialist, Georgia Cooperative Extension
 Allen Caldwell, County Extension Director, North Carolina Cooperative Extension
 Erv Evans, Horticulture Specialist, North Carolina Cooperative Extension
 Henriette Kress, www.henriettesherbal.com
Questions

http://www.caes.uga.edu/extension

http://www.agp2.org

http://www.p2ad.org