HOW TO USE

This PowerPoint presentation shows you how to use the **NRM 1.0.xls** Excel Workbook to fit several regression models to experimental data.

The models may be used to estimate nutritional requirements *or* the most economical feeding levels of critical nutrients.

	AL
Respo	ONSE Verson 1.0
Μ	ODELS
A workbook to fit a	lata from nutritional experiments to several models
Dmitry Vedenov	Department of Agricultural and Applied Economics
Gene Pesti	Department of Poultry Science
	The University of Georgia
	Athens, Georgia 30602

All you need is MicroSoft Excel, the NRM 1.0.xls file, and some input / output data.

First, a short explanation of the types of models that NRM 1.0.xls fits.

Experiments designed to estimate nutritional requirements result in a series of ordered pairs of data, the observed points.

The points come from feeding several concentrations of the limiting nutrient, with all other nutrients present in adequate amounts.

The measured responses may include growth, feed efficiency, carcass lean accumulation, egg and milk production, etc.

Several different interpretations of nutritional response data are sometimes made:

Multiple Range Tests "Broken-Line" or Spline Models Non-Linear, Continuous Models Quadratic Polynomials Saturation Kinetics Many Others

DIETARY NUTRIENT CONCENTRATION

There are several multiple range tests that may be used to determine which responses are significantly different from the maximum response.

More **conservative** multiple range tests will only indicate that large differences are 'significantly different', and therefore suggest that lower input levels result in maximum responses.

The result is lower requirement estimates with more conservative multiple range tests. But higher requirement estimates are generally considered more conservative by nutritionists.

There are several multiple range tests that may be used to determine which responses are significantly different from the maximum response.

More **conservative** multiple range tests will only indicate that large differences are 'significantly different', and therefore suggest that lower input levels result in maximum responses.

The result is lower requirement estimates with more conservative multiple range tests. But higher requirement estimates are generally considered more conservative by nutritionists.

The "requirement" is between the input levels that give maximum and sub-maximum responses

Quadratic, or second order, polynomials are easy to fit to input-output data sets using ordinary least squares methods. They fit most data sets fairly well.

Quadratic polynomials have no ability to represent a plateau. A higher order polynomial should fit data with a plateau better.

Quadratic, or second order, polynomials are easy to fit to input-output data sets using ordinary least squares methods. They fit most data sets fairly well.

Quadratic polynomials have no ability to represent a plateau. A higher order polynomial should fit data with a plateau better.

The "requirement" is the nutrient input level that gives the maximum output level, or response. Broken-Line Models are commonly fitted to nutritional response data.

These models are also called "spline" models where one segment has a slope = 0.

Broken-Line Models have a feature for a plateau, but no feature for toxic levels should the nutrient input level become excessive.

The ascending segment is a first order, or straight line.

Broken-Line Models are commonly fitted to nutritional response data.

These models are also called "spline" models where one segment has a slope = 0.

Broken-Line Models have a feature for a plateau, but not toxic levels should the nutrient input level become excessive.

The ascending segment is most often a first order, or straight line.

The "requirement" is the lowest nutrient input level that gives the maximum output level, or response. Another form of spline model has a second order polynomial for the ascending segment.

It has the same features as the first order model except for the curved ascending segment.

The curved ascending segment more realistically represents biological responses.

Another form of spline model has a second order polynomial for the ascending segment.

It has the same features as the first order model except for the curved ascending segment.

The curved ascending segment more realistically represents biological responses.

The "requirement" is the lowest nutrient input level that gives the maximum output level, or response. There are a large number of possible non-linear response models that can be fitted to nutritional response data.

The NRM.xls Workbook fits several logistics, compartmental and exponential models.

The example shown here is the Saturation Kinetics Model.

This model asymptotically approaches the maximum, so the maximum is never reached.

There are a large number of possible non-linear response models that can be fitted to nutritional response data.

The NRM.xls Workbook fits several logistics, compartmental and exponential models.

The example shown here is the Saturation Kinetics Model.

This model asymptotically approaches the maximum, so the maximum is never reached.

The "requirement" for maximum output is not defined with models that approach, but never attain, a maximum. Many non-linear models exhibit *"The law of diminishing returns"* or *"The law of diminishing marginal productivity"*.

Economic theory must be applied to these models to find the feeding level (Input) that maximizes profits (not necessarily the maximum output level).

This example is from a 1955 book "The Scientific Feeding of Chickens"

With diminishing returns models, the *"requirement"* is for maximizing profits instead of maximum performance

UGA Extension

H.J. Almquist Poultry Science 32:1001(1953)

Application of The Law of Diminishing Returns to Estimation of B-vitamins Requirements of Growth

- "The principles described are not new, but have been employed only rarely by workers in nutrition"
- "The several examples to be given below will further emphasize the broad utility of the principles in the estimation of requirements..."

U	lsing the Pr	rogram				V10
	<u> </u>			T ESP(verson 1.0
				N	ODELS	
Microsoft Excel - NRM	1.0 081506			A workbook to fit (data from nutritional ex	periments to several models
	ert Pormat Tools Data Window Help Adobe PDF $[\Delta] \stackrel{\text{def}}{\longrightarrow} \stackrel{\text{def}}{\longrightarrow} \downarrow X \square \square \square \downarrow I I I I I I I I I I I I I I I I$	🔐 🖉 🚆 Franklin Gothic Medium 🗸 14 🔹 🖪 🖌 U	≣≣⊠ \$%;			
	うろ」 🕃 😼 🎯 V Reply with Changes End Review			Dmitry Vedenov	Department of Agric	ultural and Applied Economics
				Osus Dasti	Demonstrate of Devila	. Colomo
031 -	∱~ C D E	F G H I J	K L	Gene Pesti	Department of Poult	ry Science
1					The University of Geo	orgia
2 The N	utritional Response Models workbook consists (of 21 individual worksheets:			Athens, Georgia 306	02
3			L			
4	Worksheets	Content Title Page				
5		This Page	T C			
7	Input & Summary	Main Data Input Page and Summary of Mode	Inte	∩rm	atio	n on
8	Broken Line				auto	
9	Broken Quadratic		-			
10	Saturation Kinetics			na t	'ho	
11	Logistics, 3 Parameters	Individual Model Pages	usi	ngu		
12	Logistics, 4 Parameters	manadar model r ages		U		
13	Compartmental		nro	ara	mic	I
14	RNB, Model 1			y y i a	111 12	
15	RNB, Model 2 Multiple Dange Tests	Marin in a	•	5		
16	Test Data Generator	warning Bandom Data Generator for each of the mod	four	nd	an +	ha
19	BLI Graph		IUU			
19	BLO Graph					
20	SK Graph		"T	fam		~ ~
21	L3 Graph	Black and white Graphs of the Individual Wo		IOF	nau	
	L4 Graph	for Printing. If the Axes are set the Same, th		. •		•••
$\langle \langle \rangle$	Com Graph	serve meery for comparing the models.			£_ "	
	RNB1 Graph		and	1 KE	STS-	nade
23	RNB2 Graph					page
26	100 response points can be entered into the law	ut & Summary worksheat, where the data is a	Itomotically			
	transferred to the other worksheets by pressing	the "Copy Data" button	atomatically			
29		, the copy bata batton.				
30 AT	the data has been copied to all the worksheets,	you must go to each worksheet to fit the corres	ponding model			
	Froel's Solver module is used to minimize the mation & Refs. / Input & Summary / Broken Line / Broken Ouadr	sum of squared errors for each model atic / Saturation Kinetics / Logistics, 3 Parameters / Logistics,	4 P 🔇 💷		>	
Draw 🔹 😓 AutoShapes 🔹	X X D O M M 4 0 8 8 3 - 4 - 4 - 5 m 3		,			
Ready Calculate	e			NL	M	

NRM 1.0.xls can fit several models to nutritional response data

- Broken Line
- Broken Quadratic
- Saturation Kinetics
- Logistics, 3 Parameters
- Logistics, 4 Parameters
- Compartmental
- Robbins, Norton & Baker, Model 1 Robbins, Norton & Baker, Model 2

	AL
Respo	DNSE Verson 1.0
Μ	ODELS
A workbook to fit a	lata from nutritional experiments to several models
Dmitry Vedenov	Department of Agricultural and Applied Economics
Gene Pesti	Department of Poultry Science
	The University of Georgia
	Athens, Georgia 30602

NRM 1.0.xls can fit several models to nutritional response data

- Broken Line
- Broken Quadratic
- Saturation Kinetics
- Logistics, 3 Parameters
- Logistics, 4 Parameters
- Compartmental
- Robbins, Norton & Baker, Model 1 Robbins, Norton & Baker, Model 2

	AL.	
RESPO	NSE Verson	1.0
Μ	ODELS	
A workbook to fit d	ata from nutritional experiments to several m	
Dmitry Vedenov	Department of Agricultural and Applied Ecor	nomics
Gene Pesti	Department of Poultry Science	
	The University of Georgia	
	Athens, Georgia 30602	

Each has a spreadsheet in the workbook

<u>C</u>lose Full Screen

>

99.567%

99.579%

99.582%

99.578%

99.579%

Β×

_			
1000		THE REPORT OF	4 0 004 504
1.225	MICTOSOTT	EVCOL - NRM	1 0 081506
_	Inficio auti	LYCEL - LUM	1.0 001300

в

Input

Eile Edit View Insert Format Tools Data Window Help Adobe PDF

С

Output

፤ D 💣 🖬 🕒 🖨 🖪 🔍 🖤 🖏 | Χ 🖻 🖻 - 🛷 | ળ - ભ - | 💁 Σ - ሏ| Հ| | Ϣ 🛷 @

Е

🛅 🔄 🖄 🖾 🏷 📝 🏷 👘 🙀 📦 🕸 Reply with Changes... End Review....

D

🔁 🔁 🖏 🖕

1 Point

2

З

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A

1

2

З

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

INSTRUCTIONS

G

Clear Data Range

2. Press the button below to P

Copy Data

Go to each page and foll.
Return to this page to com

First, clear the old data from the program by pressing the *"Clear Data Range"* button

n Gothic Medium 🗸 18 🔽 🗓 | 풀 풀 클 🔤 | \$ % 🤸 5% 💯 | 掌 管 | 🎛 🗸 🔗 🗸 🗸

Н

Type a question for help

Κ

L

>

NUM

Model

Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending) Saturation Kinetics Logistics, 3 Parameters Logistics, 4 Parameters Compartmental RNB, Model 1 RNB, Model 2

4955.39.554%4655.51999.581%4809.45499.567%4675.69599.579%4653.19299.582%4687.16399.578%4678.29999.579%

🛛 🔶 🕨 HOME 🖉 Information & Refs. 🔪 Input & Summary 🖉 Broken Line 🧹 Broken Quadratic 🦯 Saturation Kinetics 🦯 Logistics, 3 Parameters 🏑 Logistics, 4 P 🗹

Draw = 🔓 | AutoShapes = 🔨 🔪 🖸 🔿 🔛 📣 🐗 🔅 😰 🐼 | 🌺 = 🚣 = 🚍 🛱 💷 🇊 🥫

Ready

Ready

Instructions 1. Copy data in cells **B4:C103**

 View the data and estimate values for the Maximum and Requirement in cells F8 and H8

3. Guess the **Rate Constant** values in cell **G8** until the predicted line is close to the observed points

4. Press the button below to run solver with current settings

Fit Broken Line Model to Current Data

5. Solver will attempt to minimize SSE (red cell) by changing cells **F8:H8**

Follow the instructions that are found in the upper right of each page.

You will need to guess at the parameters for the new data set before the program can solve for the best solution

Min Input Max Input	Samı 0.47 Re	ole Catistics Min Output Max Out	1768.00
Max or Min	Rate Constant	Requirement	SSE
233.8507	-391.2590	0.7495	11914696.0357
(3,672.1197)	(18,036.6346)	(12.8577)	Lower 95% Confidence Levels
4,139.8210	17,254.1166	14.3567	Upper 95% Confidence Levels
1992 879	9002 908	6 943	Standard Ermrs
0.1173	-0.0435	0.1080	t-Statistics
0.9140	0.9681	0.9208	p-values
	21.256%		Goodness of Fit (R 2)

Instructions

1. Copy data in cells B4:C103

 View the data and estimate values for the Maximum and Requirement in cells
F8 and H8

3. Guess the **Rate Constant** values in cell **G8** until the predicted line is close to the observed points

4. Press the button below to run solver with current settings

Fit Broken Line Model to Current Data

5. Solver will attempt to minimize SSE (red cell) by changing cells **F8:H8**

Now it's time to let Excel's Solver function make the final fit by further adjusting the parameter estimates to minimize the value in cell I9.

Press this button.

	Re	egression	
Max or Min	Rate Constant	Requirement	SSE
1733.3334	-2650.0237	0.6184	2402.8333
1,701.3084	(3,210.3439)	0.5881	Lower 95% Confidence Levels
1,765.3583	(2,089.7035)	0.6487	Upper 95% Confidence Levels
16.340	285.883	0.015	Standard Errors
06.0820	-9.2696	89.9918	t-Statistics
0.0000	0.0027	0.0000	r vəlues
	99.984%		
		The	e confidence intervals
		and	d standard errors of
		the	parameters are
		cal	culated when the
		mo	del is fitted
UGA Extension	Resea	rch Bulletin 440 Instruc	ctions

	R	egression	
Max or Min	Rate Constant	Requirement	SSE
1733.3334	-2650.0237	0.6184	2402.8333
1,701.3084	(3,210.3439)	0.5881	↓ er 95% Confidence Levels
1,765.3583	(2,089.7035)	0.6487	Upper 95% Confidence Levels
16.340	285.883	0.015	Standard Errors
106.0820	-9.2696	39.9918	t-Statistics
0.0000		0000	p-values
			Goodness of Fit (R^2)
estimate is	rd error of the re especially impor	quirement tant.	
It tells how a low stand experiment	good the experir ard error = good	nent was:	
UGA Extension	Research	Bulletin 440 Instructions	S

		Regression		
Lower Asymptote	Range	r	\$	SSE
1135.9834	616.7528	10.2185	-20.0073	1115.7114
949.0751	407.5242	4.1732	(30.6673)	Lower 95% Confidence Levels
1,322.8917	825.9813	16.2638	(9.3474)	Upper 95% Confidence Levels
95.361	106.749	3.084	5,439	Standard Errors
11.9124	5.7776	3.3130	-3.6787	t-Statistics
0.0070	0.0287	0.0803	0.0666	p-values
1400 1200 1000 800 600 400	99.993%	Re Re the Fo ex	epeat the p e rest of th or this data	process for e models. , the Model #1 of
y =Lower Asymptot	Functional Form e + $\frac{\text{Range}}{1 + e^{r + s \times X}}$	Ro Ba	obbins, No aker was th	rton and ne best fit.

:B)	<u>Eile E</u> di	t <u>V</u> iew Ins	ert F <u>o</u> rmat	Iools Data Window Help Adobe PDF		- 8 >
1	A Point	B	C Outout	D E F	· · · · · · · · · · · · · · · · · · ·	
2	1	0.43	1238	INSTRUCTIONS	A comparison of the	emodels
3	2	0.5	1412	Bross the button below to	is displayed on the	"Input
4	3	0.57	1609		and Summarv "wir	ndow.
5	4	0.64	1700		Although the RNB	Model 1
6	5	0.71	1768	1. Enter your data into		
7	6	0.78	1732	Column B, Input, shov	is the best fit, the ot	hers are
8	7			Column C, Output, sr	extremely close.	
9	8			2. Press the button beit	Ş	isiy.
10	10			Copy Data		
11	11			3. Go to each page and follow the in		e models.
12	12			4. Deturn to this name to compare th		
13				4. Return to this page to compare th	e model fits. The second el i s	s highlighted yellow.
13	13			4. Return to this page to compare th	e model fits. The second el is	s highlighted yellow.
13 14 15	12 13 14			4. Return to this page to compare the Model	Fit Comparisons	s highlighted yellow.
13 14 15 16	13 14 15			4. Return to this page to compare th Model Model	Fit Comparisons Sum of Residuals ²	s highlighted yellow.
13 14 15 16 17	13 13 14 15 16			4. Return to this page to compare th <i>Model</i> Broken-Line (Linear Ascending)	Fit Comparisons Sum of Residuals ² 2402.833	s highlighted yellow. R² 99.984%
13 14 15 16 17 18	13 14 15 16 17			4. Return to this page to compare th <i>Model</i> Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending)	Fit Comparisons Sum of Residuals ² 2402.833 §) 1807.875	s highlighted yellow. R² 99.984% 99.988%
13 14 15 16 17 18 19	13 13 14 15 16 17 18			4. Return to this page to compare th Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics	Fit Comparisons Sum of Residuals ² 2402.833 g) 1807.875 5561.262	s highlighted yellow. R² 99.984% 99.988% 99.963%
13 14 15 16 17 18 19 20	13 13 14 15 16 17 18 19			4. Return to this page to compare th Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics Logistics, 3 Parameters	Fit Comparisons Sum of Residuals ² 2402.833 (s) 1807.875 5561.262 3734.086	s highlighted yellow. R ² 99.984% 99.988% 99.963% 99.975%
13 14 15 16 17 18 19 20 21	13 14 15 16 17 18 19 20			4. Return to this page to compare th Model Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics Logistics, 3 Parameters Logistics, 4 Parameters	Fit Comparisons Sum of Residuals ² 2402.833 g) 1807.875 5561.262 3734.086 4975.225	R ² 99.984% 99.988% 99.963% 99.967%
13 14 15 16 17 18 19 20 21 22	13 14 15 16 17 18 19 20 21			4. Return to this page to compare th Model Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics Logistics, 3 Parameters Logistics, 4 Parameters Compartmental	Fit Comparisons Sum of Residuals 2 2402.833 (3) 1807.875 5561.262 3734.086 4975.225 2747.792	R ² 99.984% 99.988% 99.963% 99.975% 99.967% 99.982%
13 14 15 16 17 18 19 20 21 22 23	13 14 15 16 17 18 19 20 21 22			4. Return to this page to compare the Model Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics Logistics, 3 Parameters Logistics, 4 Parameters Compartmental RNB, Model 1	<i>Fit Comparisons</i> Sum of Residuals ² 2402.833 3) 1807.875 5561.262 3734.086 4975.225 2747.792 1115.711	R ² 99.984% 99.988% 99.963% 99.967% 99.967% 99.982% 99.993%
13 14 15 16 17 18 19 20 21 22 23 24	13 14 15 16 17 18 19 20 21 22 23			4. Return to this page to compare th Model Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics Logistics, 3 Parameters Logistics, 4 Parameters Compartmental RNB, Model 1 RNB, Model 1 RNB, Model 2	Fit Comparisons Sum of Residuals ² 2402.833 3) 1807.875 5561.262 3734.086 4975.225 2747.792 1115.711 4834.503	R ² 99.984% 99.988% 99.963% 99.967% 99.982% 99.993% 99.968%
13 14 15 16 17 18 19 20 21 22 23 24 25	13 14 15 16 17 18 19 20 21 22 23 24			4. Return to this page to compare th Model Model Broken-Line (Linear Ascending) Broken-Line (Quadratic Ascending Saturation Kinetics Logistics, 3 Parameters Logistics, 4 Parameters Compartmental RNB, Model 1 RNB, Model 1 RNB, Model 2	Fit Comparisons Sum of Residuals ² 2402.833 3) 1807.875 5561.262 3734.086 4975.225 2747.792 1115.711 4834.503	R ² 99.984% 99.963% 99.967% 99.967% 99.982% 99.993% 99.968%

ш

 \langle BLL Graph / BLQ Graph angle SK Graph / L3 Graph / L4 Graph / Com Graph / RNB1 Graph / RNB2 Graph /

UGA Extension

When the axes are set to the right scale and titles are added, nice graphs are easy to print.

UGA Extension

All of these regression models may be helpful to describe simple input / output relationships to estimate nutrient requirements.

The big challenge for producers is to decide whether the requirement is for maximum performance or maximum profits. Even when nutritional requirements are well known, nutritionists don't necessarily know how much to supplement to feeds.

Because of ingredient variability, nutritionists may decide to add a margin of safety to cover the risk of feeding the 50% of feeds that are below average for any nutrient.

We hope this program is of value to you

Gene Pesti Dmitry Vedenov

Reviewed by **Esendugue Greg Fonsah**, Agribusiness Extension Economist Department of Agricultural and Applied Economics

extension.uga.edu

Research Bulletin 440 (Instructions)

Reviewed December 2022

Published by the University of Georgia in cooperation with Fort Valley State University, the U.S. Department of Agriculture, and counties of the state. For more information, contact your local UGA Cooperative Extension office. The University of Georgia College of Agricultural and Environmental Sciences (working cooperatively with Fort Valley State University, the U.S. Department of Agriculture, and the counties of Georgia) offers its educational programs, assistance, and materials to all people without regard to race, color, religion, sex, national origin, disability, gender identity, sexual orientation or protected veteran status and is an Equal Opportunity, Affirmative Action organization.